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INTRODUCTION 
In the previous century, Elisha Loomis (1968, p. 244), in his famous book of over 250 proofs of the theorem 
of Pythagoras, reasoned that no trigonometric proof of the Pythagorean theorem was possible. He argued 
as follows: 

“There are no trigonometric proofs [of the Pythagorean theorem], because all of 
the fundamental formulae of trigonometry are themselves based upon the truth of 
the Pythagorean theorem; because of this theorem we say sin2 𝐴𝐴 + cos2 𝐴𝐴 = 1, etc. 
Trigonometry is because the Pythagorean theorem is.” 

However, is it really true that no trigonometric proof is possible? Some older AMESA members may recall 
that in the late 1980s, Dexter Luthuli and I had a vigorous discussion in the Letters to the Editor of the 
journal Pythagoras precisely about this issue. While Dexter steadfastly maintained the viewpoint of Loomis 
(1968), I argued that a trigonometric proof was possible as long as one did not commit a circular argument 
by using the Pythagorean trigonometric identity (sin2 𝐴𝐴 + cos2 𝐴𝐴 = 1).  

Basically, my argument was that any similarity proof of Pythagoras could be rewritten in terms of the basic, 
introductory definitions of the sine, cosine and tangent ratios for right-angled triangles. Below are more 
details about my argument as well as an example showing how a familiar similarity proof of Pythagoras can 
be seen to be equivalent to one in terms of the basic trigonometric ratios. 

A SIMILARITY PROOF TRANSFORMED INTO A TRIGONOMETRIC ONE 
First of all, it is important to note, as also pointed out in De Villiers (2022), that similarity forms the 
fundamental basis of trigonometry.  

 
FIGURE 1 

For example, as shown in Figure 1, all right triangles 𝐴𝐴𝑛𝑛𝐵𝐵𝐶𝐶𝑛𝑛 with ∠𝐵𝐵 = 90° and a given ∠𝐶𝐶𝑛𝑛 = 𝜃𝜃, are similar, 
since two corresponding angles are equal. Hence, the ratios of the sides, 𝐴𝐴𝐵𝐵/𝐵𝐵𝐶𝐶, 𝐴𝐴𝐵𝐵/𝐴𝐴𝐶𝐶 and 𝐵𝐵𝐶𝐶/𝐴𝐴𝐶𝐶 of all 
right triangles for a given angle 𝜃𝜃 are constant, and this gives us the three basic trigonometric ratios, namely, 
tangent, sine and cosine. To paraphrase the quote from Loomis earlier, we could therefore say: 
“Trigonometry is because similarity is.” 
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Let us now consider a well-known similarity proof of the theorem of Pythagoras. Although it’s not known 
exactly what proof Pythagoras himself gave, according to historian van der Waerden (1978), this type of 
proof might have been what he could have produced. 

 
FIGURE 2 

Proof: 
Consider a right-angled triangle 𝐴𝐴𝐵𝐵𝐶𝐶 with ∠𝐴𝐴 = 90° as shown above in Figure 2. Drop a perpendicular from 
𝐴𝐴 to intersect 𝐵𝐵𝐶𝐶 at 𝐷𝐷, and let 𝐴𝐴𝐵𝐵 = 𝑐𝑐, 𝐴𝐴𝐶𝐶 = 𝑏𝑏, 𝐵𝐵𝐷𝐷 = 𝑝𝑝, 𝐷𝐷𝐶𝐶 = 𝑞𝑞 and 𝐵𝐵𝐶𝐶 = 𝑎𝑎. I now present the similarity 
proof in the left column of the table below, whereas the equivalent trigonometric version is shown in the 
right column. 

∆𝐴𝐴𝐵𝐵𝐷𝐷 /// ∆𝐶𝐶𝐵𝐵𝐴𝐴    (2 corresponding ∠s equal) In ∆𝐴𝐴𝐵𝐵𝐷𝐷, cos𝐵𝐵 = 𝐵𝐵𝐵𝐵
𝐴𝐴𝐵𝐵

 ; In ∆𝐶𝐶𝐵𝐵𝐴𝐴, cos𝐵𝐵 = 𝐴𝐴𝐵𝐵
𝐶𝐶𝐵𝐵

 

⇒  𝐵𝐵𝐵𝐵
𝐴𝐴𝐵𝐵

= 𝐴𝐴𝐵𝐵
𝐶𝐶𝐵𝐵

 ⇒ 𝑐𝑐2 = 𝑝𝑝 × 𝑎𝑎   ⇒  𝐵𝐵𝐵𝐵
𝐴𝐴𝐵𝐵

= 𝐴𝐴𝐵𝐵
𝐶𝐶𝐵𝐵

 ⇒ 𝑐𝑐2 = 𝑝𝑝 × 𝑎𝑎   

∆𝐴𝐴𝐶𝐶𝐷𝐷 /// ∆𝐵𝐵𝐶𝐶𝐴𝐴    (2 corresponding ∠s equal) In ∆𝐴𝐴𝐶𝐶𝐷𝐷, cos𝐶𝐶 = 𝐵𝐵𝐶𝐶
𝐴𝐴𝐶𝐶

 ; In ∆𝐵𝐵𝐶𝐶𝐴𝐴, cos𝐶𝐶 = 𝐴𝐴𝐶𝐶
𝐵𝐵𝐶𝐶

 

⇒  𝐵𝐵𝐶𝐶
𝐴𝐴𝐶𝐶

= 𝐴𝐴𝐶𝐶
𝐵𝐵𝐶𝐶

 ⇒ 𝑏𝑏2 = 𝑞𝑞 × 𝑎𝑎   ⇒  𝐵𝐵𝐶𝐶
𝐴𝐴𝐶𝐶

= 𝐴𝐴𝐶𝐶
𝐵𝐵𝐶𝐶

 ⇒ 𝑏𝑏2 = 𝑞𝑞 × 𝑎𝑎   

⇒  𝑏𝑏2 + 𝑐𝑐2 = 𝑞𝑞 × 𝑎𝑎 + 𝑝𝑝 × 𝑎𝑎  

                      = (𝑞𝑞 + 𝑝𝑝) × 𝑎𝑎  

                    = 𝑎𝑎2  

Q.E.D. 

⇒  𝑏𝑏2 + 𝑐𝑐2 = 𝑞𝑞 × 𝑎𝑎 + 𝑝𝑝 × 𝑎𝑎  

                      = (𝑞𝑞 + 𝑝𝑝) × 𝑎𝑎  

                    = 𝑎𝑎2  

Q.E.D. 

 
Clearly the trigonometric proof1 in the column on the right is merely a different notational rendition of the 
similarity proof on the left. And since it does not at all involve the identity sin2 𝐴𝐴 + cos2 𝐴𝐴 = 1, no circular 
argument occurs. It is therefore equivalent to, and as valid, as the corresponding similarity proof. 

Some may argue that the proof in the column on the right is merely a similarity proof ‘in disguise’. Personally, 
however, I would prefer to call it a ‘trigonometric proof’ since it explicitly uses the definition of the cosine 
ratio in terms of a right triangle. And basically, any valid proof of Pythagoras using similarity can be translated 
in the same way into an equivalent trigonometric proof, and readers are invited to explore converting some 
examples of their own. 

 
1 At Wikipedia at https://en.wikipedia.org/wiki/Pythagorean_theorem it is stated that basically the same 
trigonometric proof as this one was apparently also given by Albert Einstein. 
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TRIGONOMETRIC PROOF BY ZIMBA & LUZIA 
Zimba (2009) provided an ingenious proof of the trigonometric identity sin2 𝑥𝑥 + cos2 𝑥𝑥 = 1 independently 
of the Pythagorean theorem by applying the compound angle formula for the cosine function, namely 
cos(𝛼𝛼 − 𝛽𝛽) = cos𝛼𝛼 cos𝛽𝛽 + sin𝛼𝛼 sin𝛽𝛽. He then used the independently proven identity sin2 𝑥𝑥 + cos2 𝑥𝑥 = 1 
to prove the Pythagorean theorem. Along similar lines, Luzia (2015) gives other trigonometric proofs by 
using the half angle formula. However, it is important to note that both authors carefully restricted the 
domain of all angles involved to positive acute angles2, and defined the sine and cosine functions as ratios 
of the sides of right-angled triangles. As such, the proofs are therefore based on similarity as before.  

A RECENT TRIGONOMETRIC PROOF 
Earlier this year two high school students, Calcea Johnson and Ne’Kiya Jackson, from St. Mary's Academy 
in New Orleans, caused quite a media stir by their discovery of a trigonometric proof of the Pythagorean 
theorem. The two students were even invited to the Spring Southeastern Sectional Meeting of the American 
Mathematical Society to present their results. For more information, and for reconstructions of their proof, 
readers are invited to view the YouTube videos by MathTrain (2023) and polymathematic (2023) – references 
and URLs are provided at the end of the article.  

While the students’ proof appears to be quite original and creative, it also uses similarity and the basic right 
triangle definitions of trigonometric ratios exactly as in the example above (as well as the sine rule and the 
sum of an infinite geometric series). Roughly, the idea of their proof is as follows. 

Rough outline of proof by Johnson & Jackson 
Consider Figure 3. The students start out with a right-angled triangle 𝐴𝐴𝐵𝐵𝐶𝐶 with sides 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and angles 𝛼𝛼 
and 𝛽𝛽 as indicated. The students then reflected the right triangle in side 𝑏𝑏 and drew a perpendicular to 𝐵𝐵𝐵𝐵′ 
at 𝐵𝐵′. The extension of the reflected side 𝑐𝑐 was next drawn to meet with the perpendicular to 𝐴𝐴𝐵𝐵 constructed 
at 𝐵𝐵 to form a large right triangle 𝐴𝐴𝐵𝐵𝐷𝐷3. The students then created an infinite series of converging similar 
right triangles as shown.  

By applying the sine rule to triangle 𝐴𝐴𝐵𝐵𝐵𝐵′ with respect to vertices 𝐴𝐴 and 𝐵𝐵, then simplifying by substituting 
the value of sin𝛽𝛽 in right triangle 𝐴𝐴𝐵𝐵𝐶𝐶, they arrived at the following equation: 

sin(2𝛼𝛼) =
2𝑎𝑎. sin 𝛽𝛽

𝑐𝑐 =
2𝑎𝑎𝑏𝑏
𝑐𝑐2  … (1) 

Next the students determined the lengths of 𝐵𝐵𝐷𝐷 and 𝐴𝐴𝐷𝐷 by calculating the respective sums of the converging 
geometric series of the hypotenuses in 𝐵𝐵𝐷𝐷 as well as 𝐵𝐵′𝐷𝐷 to write down an expression for sin 2𝛼𝛼 in right-
angled triangle 𝐴𝐴𝐵𝐵𝐷𝐷: 

sin(2𝛼𝛼) =
𝐵𝐵𝐷𝐷
𝐴𝐴𝐷𝐷 =

2𝑎𝑎𝑏𝑏
𝑎𝑎2 + 𝑏𝑏2  … (2) 

By equating equations 1 and 2 the students noted that 2𝑎𝑎𝑏𝑏 cancels out on both sides, and by inverting both 
equations they obtained the desired result: 𝑎𝑎2 + 𝑏𝑏2 = 𝑐𝑐2. 
 

 
2 To prove the theorem of Pythagoras a more general definition of angles over a larger domain of say (−360°; 360°) 
is not necessary as the other two angles in a right triangle are acute. 

3 Note that the construction of this diagram is based on the assumption that 𝛼𝛼 > 𝛽𝛽. For example, if 𝛽𝛽 > 𝛼𝛼 then right 
triangle 𝐴𝐴𝐵𝐵𝐷𝐷 will lie to the other side of 𝐴𝐴𝐵𝐵, and the perpendicular to 𝐵𝐵𝐵𝐵′ will have to be drawn at 𝐵𝐵 to create the 
infinite series of similar right triangles. A more serious flaw of their proof is that when 𝛼𝛼 = 𝛽𝛽 = 45°, then lines 𝐴𝐴𝐷𝐷 
and 𝐵𝐵𝐷𝐷 are parallel, and no right triangle 𝐴𝐴𝐵𝐵𝐷𝐷 is formed. The students needed to have considered this case separately, 
and it is not hard to prove Pythagoras in this case. 
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FIGURE 3 

While the students’ proof is quite ingenious, it is nonetheless also based on similarity, and one could easily 
rewrite it completely in terms of similarity without any reference to sine ratios. So although it is a rather 
more complicated proof than the first example, it is fundamentally the same type of ‘trigonometric’ proof. 

UNIT CIRCLE DEFINITION OF TRIGONOMETRIC FUNCTIONS 
All three examples of trigonometric proofs discussed in this article rely on the trigonometric ratios defined 
only for right-angled triangles – i.e. for positive acute angles, and not for obtuse, reflex or negative angles. 
While the ancient Greeks extended their application of trigonometry to obtuse angles in various ways4, their 
approaches were limited in generality. From round about the Renaissance in the 17th century, as the need 
arose from various applications in science, the definition of the trigonometric ratios was extended to 
mathematical functions by using the so-called ‘unit circle’ definition of trigonometry. 

This approach is well-known and is used in high schools around the world. Basically, we start off as shown 
in Figure 4 by considering a unit circle in the Cartesian plane with equation 𝑥𝑥2 + 𝑦𝑦2 = 1. Then cos 𝜃𝜃 and 
sin𝜃𝜃 are respectively defined as the 𝑥𝑥- and 𝑦𝑦-coordinates of the point where the ray forming the angle 𝜃𝜃 
intersects this circle. 

 

 
4 Ptolemy (100-170 AD), for example, used the theorem named after him (that for a cyclic quadrilateral 𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷, 
𝐴𝐴𝐵𝐵 × 𝐶𝐶𝐷𝐷 + 𝐵𝐵𝐶𝐶 × 𝐷𝐷𝐴𝐴 = 𝐴𝐴𝐶𝐶 × 𝐵𝐵𝐷𝐷) to calculate sine values for angles between 90° and 180° (Maor, 1998). 
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FIGURE 4 

This is quite a brilliant and useful extension of the basic trigonometric ratios for right-angled triangles in 
order to be able to consistently handle obtuse, reflex or negative angles, as well as angles larger or smaller 
than 360° or −360°. However, with this gain there is also a loss. Not only is the distance between two points 
(𝑥𝑥1; 𝑦𝑦1) and (𝑥𝑥2; 𝑦𝑦2) in the Cartesian plane explicitly defined in terms of the Pythagorean theorem as 
�(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2, the use of the ‘unit circle’ definition also implicitly assumes the Pythagorean 
trigonometric identity sin2 𝐴𝐴 + cos2 𝐴𝐴 = 1 (as is clearly evident in Figure 4). 

So, if one assumes the unit circle definitions of the trigonometric ratios as analytic/algebraic functions, then 
Loomis (and Dexter Luthuli) are perfectly correct in claiming that one cannot then produce a trigonometric 
proof for the theorem of Pythagoras, as that would automatically result in a circular argument!  

CONCLUDING COMMENTS 
To get back to the original question of whether a trigonometric proof for the theorem of Pythagoras is 
possible, the answer is unfortunately twofold: yes and no. 

1) Yes, if we restrict the domain to positive acute angles, any valid similarity proof can 
be translated into a corresponding trigonometric one, or alternatively, we could use 
an approach like that of Zimba (2009) or Luzia (2015). 

2) No, if we strictly adhere to the unit circle definitions of the trigonometric ratios as 
analytic functions, since that would lead to a circularity. 

While trigonometric functions today can be defined in many different ways, for example by power series 
expansions, continued fractions, Euler’s formula for the natural exponential function, etc., I am not aware 
of any approaches using these alternative definitions to prove the theorem of Pythagoras. However, this 
might be an interesting avenue for some of our readers to explore.  
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