An Interesting Triangle Identity

Letuku Moses Makobe

Makwe Senior Secondary School, Mohlarekoma Village, Nebo
makobe.moses@gmail.com

Consider an acute-angled triangle $A B C$ with side lengths a, b and c as shown in Figure 1. A perpendicular is dropped from vertex A to point D on $B C$.

FIGURE 1: Triangle $A B C$ with side lengths a, b and c.
In triangle $A B D$ we have $\cos B=\frac{x}{c}$ from which $x=c \cdot \cos B$. In triangle $A C D$ we have $\cos C=\frac{a-x}{b}$ from which $x=a-b . \cos C$. Equating these two expressions for x and rearranging gives:

$$
a=b \cdot \cos C+c \cdot \cos B
$$

It can similarly be shown that:

$$
\begin{aligned}
b & =a \cdot \cos C+c \cdot \cos A \\
c & =a \cdot \cos B+b \cdot \cos A
\end{aligned}
$$

We thus have:

$$
a+b+c=b \cdot \cos C+c \cdot \cos B+a \cdot \cos C+c \cdot \cos A+a \cdot \cos B+b \cdot \cos A
$$

This can be rearranged to give the following interesting result:

$$
a+b+c=(b+c) \cdot \cos A+(a+c) \cdot \cos B+(a+b) \cdot \cos C
$$

It is left to the reader to confirm that this result also holds true for an obtuse-angled triangle.

