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INTRODUCTION 

In this article we investigate the interesting geometrical set-up created by constructing squares on the sides 
of an acute-angled triangle as illustrated in Figure 1. There are a number of interesting results and invariant 
properties that one can develop from this starting point, and these have the potential to be used as classroom 
explorations or directed investigations. For the purposes of this article, we will largely focus on results that 
relate to areas. 

 
FIGURE 1:  Squares constructed on the sides of an acute-angled triangle. 

INTERESTING AREA SUBDIVISION INVARIANCE 

Begin with acute-angled triangle 𝐴𝐴𝐴𝐴𝐴𝐴 with a square constructed on each side and place an arbitrary point 𝑃𝑃 
inside the triangle. From point 𝑃𝑃 construct perpendiculars to each side of the triangle. Extend each of these 
perpendiculars to divide each square into two rectangles as illustrated in Figure 2.  

 
FIGURE 2:  Subdividing the squares using an arbitrary point 𝑃𝑃 in the triangle. 

 



Page 34 
 

Learning and Teaching Mathematics, No. 36, 2024, pp. 33-38 
 

Labelling the areas of these rectangles as 𝐴𝐴1 to 𝐴𝐴6 in a circular fashion, then the following interesting 
invariant property holds with respect to the six areas: 

𝐴𝐴1 + 𝐴𝐴3 + 𝐴𝐴5 = 𝐴𝐴2 + 𝐴𝐴4 + 𝐴𝐴6 

We can prove this result as follows, with reference to Figure 3. 

 
FIGURE 3:  Proving that 𝐴𝐴1 + 𝐴𝐴3 + 𝐴𝐴5 = 𝐴𝐴2 + 𝐴𝐴4 + 𝐴𝐴6. 

𝐴𝐴1 + 𝐴𝐴3 + 𝐴𝐴5 = 𝑥𝑥1(𝑥𝑥1 + 𝑥𝑥2) + 𝑦𝑦1(𝑦𝑦1 + 𝑦𝑦2) + 𝑧𝑧1(𝑧𝑧1 + 𝑧𝑧2) = 𝑥𝑥12 + 𝑦𝑦12 + 𝑧𝑧12 + 𝑥𝑥1𝑥𝑥2 + 𝑦𝑦1𝑦𝑦2 + 𝑧𝑧1𝑧𝑧2 

𝐴𝐴2 + 𝐴𝐴4 + 𝐴𝐴6 = 𝑥𝑥2(𝑥𝑥1 + 𝑥𝑥2) + 𝑦𝑦2(𝑦𝑦1 + 𝑦𝑦2) + 𝑧𝑧2(𝑧𝑧1 + 𝑧𝑧2) = 𝑥𝑥22 + 𝑦𝑦22 + 𝑧𝑧22 + 𝑥𝑥1𝑥𝑥2 + 𝑦𝑦1𝑦𝑦2 + 𝑧𝑧1𝑧𝑧2 

In order to prove our result, all we now need to do is show that 𝑥𝑥12 + 𝑦𝑦12 + 𝑧𝑧12 = 𝑥𝑥22 + 𝑦𝑦22 + 𝑧𝑧22. In 
Figure 3 we have included line segments connecting point 𝑃𝑃 to the vertices of triangle 𝐴𝐴𝐴𝐴𝐴𝐴. These have 
been labelled 𝑡𝑡1, 𝑡𝑡2 and 𝑡𝑡3. The three altitudes have been labelled ℎ1, ℎ2 and ℎ3. We can now use the 
Pythagorean theorem in each of the six small right-angled triangles into which triangle 𝐴𝐴𝐴𝐴𝐴𝐴 is subdivided. 

𝑡𝑡12 = 𝑥𝑥22 + ℎ1
2    →    𝑥𝑥22 = 𝑡𝑡12 − ℎ1

2 

𝑡𝑡12 = 𝑦𝑦12 + ℎ2
2    →    𝑦𝑦12 = 𝑡𝑡12 − ℎ2

2 

𝑡𝑡22 = 𝑦𝑦22 + ℎ2
2    →    𝑦𝑦22 = 𝑡𝑡22 − ℎ2

2 

𝑡𝑡22 = 𝑧𝑧12 + ℎ3
2    →    𝑧𝑧12 = 𝑡𝑡22 − ℎ3

2 

𝑡𝑡32 = 𝑧𝑧22 + ℎ3
2    →    𝑧𝑧22 = 𝑡𝑡32 − ℎ3

2 

𝑡𝑡32 = 𝑥𝑥12 + ℎ1
2    →    𝑥𝑥12 = 𝑡𝑡32 − ℎ1

2 
We thus have: 

𝑥𝑥12 + 𝑦𝑦12 + 𝑧𝑧12 = 𝑡𝑡12 + 𝑡𝑡22 + 𝑡𝑡32 − �ℎ1
2 + ℎ2

2 + ℎ3
2� 

𝑥𝑥22 + 𝑦𝑦22 + 𝑧𝑧22 = 𝑡𝑡12 + 𝑡𝑡22 + 𝑡𝑡32 − �ℎ1
2 + ℎ2

2 + ℎ3
2� 

This shows that 𝑥𝑥12 + 𝑦𝑦12 + 𝑧𝑧12 = 𝑥𝑥22 + 𝑦𝑦22 + 𝑧𝑧22 and completes the proof. This latter result is known 
as Carnot’s perpendicularity theorem, named after the French mathematician Lazare Carnot (1753-1823). 

 



Page 35 
 

Learning and Teaching Mathematics, No. 36, 2024, pp. 33-38 
 

TRIANGLES FORMED BY THE SQUARES 

We once again begin with acute-angled triangle 𝐴𝐴𝐴𝐴𝐴𝐴 with a square constructed on each side. The vertices 
of the squares are then connected as illustrated in Figure 4. The interesting result is that each of the triangles 
constructed in this fashion has the same area as the original triangle 𝐴𝐴𝐴𝐴𝐴𝐴, i.e. 𝐴𝐴1 = 𝐴𝐴2 = 𝐴𝐴3 = 𝐴𝐴4. 

 
FIGURE 4:  Forming three further triangles of equal area to ∆𝐴𝐴𝐴𝐴𝐴𝐴. 

This result is historically attributed to Vecten, a 19th century French mathematician. There are a number of 
ways that one can prove this result. We will consider three different approaches – one using trigonometry, 
one using geometric constructions, and one involving dynamic geometric visualisation. 

Proof 1 
With reference to Figure 5: 

𝐴𝐴2 =
1
2
𝑎𝑎𝑏𝑏 sin(180° − 𝜃𝜃) =

1
2
𝑎𝑎𝑏𝑏 sin𝜃𝜃 = 𝐴𝐴1 

𝐴𝐴3 =
1
2
𝑏𝑏𝑐𝑐 sin(180° − 𝛼𝛼) =

1
2
𝑏𝑏𝑐𝑐 sin𝛼𝛼 = 𝐴𝐴1 

𝐴𝐴4 =
1
2
𝑎𝑎𝑐𝑐 sin(180° − 𝛽𝛽) =

1
2
𝑎𝑎𝑐𝑐 sin𝛽𝛽 = 𝐴𝐴1 

 
 FIGURE 5:  A trigonometric proof. 
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Proof 2 
With reference to Figure 6, extend one side of each square to form three new triangles, each of which is 
congruent to the original triangle 𝐴𝐴𝐴𝐴𝐴𝐴. Each of these triangles has the same area as its adjoining triangle 
since the median of the large triangle (formed by each pair of adjoining triangles) bisects the area of the large 
triangle, from which it follows that 𝐴𝐴1 = 𝐴𝐴2 = 𝐴𝐴3 = 𝐴𝐴4. 

 
FIGURE 6:  A proof using geometric construction and congruent triangles. 

Proof 3 
The third proof, as illustrated in Figure 7, relies on dynamic geometric visualisation and is attributed as a 
‘proof without words’ to Steven L. Snover. The proof again relies on the observation that the median of a 
triangle subdivides the triangle into two smaller triangles of equal area. Expressed differently, the median of 
a triangle subdivides the triangle into two smaller triangles each having the same length base and the same 
perpendicular height, and hence the same area. 

            
FIGURE 7:  A proof without words relying on dynamic geometric visualisation. 
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AN INTERESTING GEOMETRIC EXTENSION 

Let us now return to the original configuration. A further interesting result (although not related to area) 
arises when each of the medians of the central triangle 𝐴𝐴𝐴𝐴𝐴𝐴 is extended to the opposite side of the outer 
triangle through its connecting vertex, as illustrated in Figure 8. The interesting result is that each of these 
extended medians is perpendicular to the opposite side of its connected triangle.  

 
 FIGURE 8:  Drawing and extending the three medians of triangle 𝐴𝐴𝐴𝐴𝐴𝐴. 

This result can readily be proved using an elegant construction as illustrated in Figure 9. Use the original 
triangle 𝐴𝐴𝐴𝐴𝐴𝐴 and construct parallelogram 𝐴𝐴𝐴𝐴𝐷𝐷𝐴𝐴. Since co-interior angles on parallel lines are 
supplementary, we have 𝐴𝐴�̂�𝐴𝐷𝐷 = 180° − (𝛼𝛼 + 𝛽𝛽), and from angles round a point we have 𝐷𝐷�̂�𝐴𝐻𝐻 = 180° −
(𝛼𝛼 + 𝛽𝛽). From this it follows that ∆𝐷𝐷𝐴𝐴𝐻𝐻 and ∆𝐷𝐷𝐴𝐴𝐴𝐴 are congruent (SAS). Thus 𝐴𝐴𝐻𝐻�𝐹𝐹 = 𝛽𝛽, and since 
𝐹𝐹�̂�𝐴𝐻𝐻 = 90° − 𝛽𝛽 (angles on a straight line) it follows that 𝐴𝐴𝐹𝐹�𝐻𝐻 = 90°, which proves the result. 

 
FIGURE 9:  Proving the result with an elegant construction. 
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A FINAL EXTENSION INVESTIGATION 

Returning to Figure 4, consider what would happen if squares were constructed on the third face of each of 
the three outer triangles, and these were then connected to form quadrilaterals as illustrated in Figure 10. 

                
FIGURE 10:  Extending the structure outwards. 

As an initial observation, note that each of the quadrilaterals formed is a trapezium, i.e. each quadrilateral 
has a pair of opposite sides parallel. Furthermore, the area of each of these trapeziums is the same, and this 
area is exactly five times the area of the original central triangle. It is left to the interested reader to explore 
this further. 

CONCLUDING COMMENTS 

The purpose of this article was to investigate an interesting geometrical configuration – squares constructed 
on the sides of an acute-angled triangle – and to highlight a number of interesting results and invariant 
properties that could be explored using this specific geometrical configuration as a starting point. Many of 
these have the potential to be worked into classroom explorations or directed investigations. 
For the purposes of this article we largely focused on results relating specifically to area, but there are many 
other geometrical results that could be explored using this particular configuration as a starting point. 
Furthermore, we have specifically focused on an acute-angled central triangle. Do these results still hold true 
in the case of an obtuse-angled triangle? What if, instead of constructing the three squares outwardly, we 
constructed them inwardly so that they overlapped? More generally, instead of starting with a central triangle, 
do these results still hold true if we start with a different convex polygon such as a quadrilateral, pentagon 
or hexagon? These further considerations are left to the interested reader to explore. 
The original configuration of squares constructed on the sides of a triangle is known variously as Vecten’s 
configuration or the Bride’s Chair and is a well-known geometric configuration. It has been studied quite 
extensively, illustrating the immense richness of this simple configuration. For readers who wish to explore 
this further, the following links are suggested: 
https://www.cut-the-knot.org/ctk/BridesChair.shtml 
https://en.wikipedia.org/wiki/Vecten_points 
http://dynamicmathematicslearning.com/bottema.html 
http://dynamicmathematicslearning.com/crossdiscovery.html 
 




