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One of the aspects of mathematics that I particularly enjoy is how a simple idea can often lead to a wealth 

of mathematical exploration. One such idea is the classic ‘difference of two squares’. Within the school 

curriculum the difference of two squares is usually introduced as a specific form of factorisation. Learners 

usually become quite proficient at identifying the classic ‘difference of two squares’ structure and quickly 

learn how to factorise such expressions, for example      factorises to            and       

factorises to             . However, despite the general proficiency exhibited with this kind of task, 

I suspect that for many learners the process is merely one of spotting a well-known algebraic structure and 

applying a practised algorithmic procedure with very little conceptual engagement with, or meaningful 

understanding of, the fundamental idea of the ‘difference of two squares’. What I hope to share in this 

article is how by focusing on the underlying concept, rather than the algebraic process itself, one can open 

up a treasure trove of mathematical ideas, the exploration of which has the potential to create meaningful 

links between different areas of mathematics and thereby provide meaningful insight into the fundamental 

idea of the ‘difference of two squares’.       

AN INITIAL NUMERIC CHALLENGE 

Let’s begin by exploring the following simple question: “How many natural numbers can be expressed as the 

difference of two squares?” One method of exploring this question would be to pick a natural number and by a 

process of trial and error try to find a pair of perfect squares whose difference gives the chosen natural 

number. Perhaps a more systematic approach would be to list the first twenty or so perfect squares and to 

investigate potential patterns generated from their differences. Below are the first twenty perfect squares: 

                                                                                       

In the above list I haven’t included zero as a perfect square, but one could of course do so if one wanted. 

Notice that the difference between consecutive terms generates the sequence of odd numbers, namely 

          … This sequence would of course have started with   if we had included zero in our sequence 

of perfect squares. To understand why the difference between consecutive terms always generates an odd 

number we could carry out a bit of algebraic exploration. Algebraically we can express the difference 

between consecutive perfect squares as           where    . This expression easily simplifies to 

     which of course generates the sequence           … for    . Although the algebra shows 

why the sequence of odd numbers is generated, greater insight can perhaps be gleaned from a more visual 

engagement with the scenario. Figure 1 shows the first five perfect squares represented pictorially.    

 

 

 

 

 

 

FIGURE 1:  Visual representation of the first five perfect squares. 
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If we remove the preceding perfect square from each perfect square in the pictorial sequence, then it 

becomes visually clear why we always generate an odd number. Removing    dots from a square array of 

       dots always leaves an L-shaped structure comprising   dots directly above the removed square, 

  dots to the right of the removed square, and a single dot in the upper right-hand corner (Fig. 2). There 

are thus      dots in each L-shape, from which we obtain the sequence           … for    .   

 

 

 

 

 

 

FIGURE 2:  Visualising the difference between consecutive perfect squares. 

Having investigated the difference between consecutive terms one might be tempted to investigate other 

differences. Notice for example that the difference between consecutive odd-numbered terms generates 

the multiples of eight:       ;         ;          ;          etc. This observation 

also lends itself rather nicely to a bit of algebraic exploration. Taking our original sequence of perfect 

squares and extracting only the odd-numbered terms generates the following sequence: 

                                          

Since this sequence represents the squares of the first   odd numbers, the nth term of the sequence can be 

expressed algebraically as            for    . The difference between two consecutive terms of 

the sequence is thus: 

                 =                       

      =                   

      =                       

      =      

The algebra thus neatly shows why the difference between consecutive terms generates multiples of eight.  

Let’s now return to the original question, “How many natural numbers can be expressed as the difference of two 

squares?”, and approach it systematically by setting up a table (Figure 3). The upmost row shows the first 

sixteen counting numbers ( ). The leftmost column also shows the first sixteen counting numbers ( ). 

Each cell in the table represents      . The table contains some interesting patterns. If we take the 

diagonal of zeros as being the first diagonal, then notice that the second diagonal is the sequence of 

consecutive odd numbers while the third diagonal gives the multiples of 4. The second diagonal represents 

      where   is one less than  . In other words it can be expressed as             which 

simplifies to     , i.e. the sequence of odd numbers. In a similar vein the third diagonal represents 

      where   is two less than  . In other words it can be expressed as             which 

simplifies to     , thereby explaining why every term in the third diagonal is a multiple of  . Other 

diagonals can be explored similarly. In particular, notice that diagonals comprise either (i) only odd 

numbers or (ii) only even numbers that are a multiple of  . Since we’ve established that all odd numbers 

can be expressed as a difference of two squares, and it would seem that all multiples of   can be expressed 

as a difference of two squares, the question arises as to whether there are any numbers that can’t be 

expressed as the difference of two squares.    
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FIGURE 3:  Integers determined from the difference of two squares. 

Closer inspection of Figure 3 reveals the absence of the numbers                     … The numbers 

in this sequence are all twice an odd number – i.e. dividing every number in the sequence by   gives the 

sequence of consecutive odd numbers. Is it thus possible that the only numbers not expressible as the 

difference of two squares are those that are the product of an odd number with  ? Let’s explore this 

conjecture a little more carefully. Given that the difference of two squares       can be expressed in 

factorised form as           , it follows that only those numbers that can be expressed in the form 

           can be written as the difference of two squares. Notice that the sum of the two factors 

      and       is   , i.e. the sum of the two factors is even. This means that the factors must either 

be both odd or both even. The only numbers for which this is not possible are those that are twice an odd 

number. By way of example, 14 (twice  ) can be expressed in factorised form as either      or    . 

In both instances one factor is odd while the other is even. This reasoning also explains why some 

numbers can be expressed as the difference of two squares in more than one way. Let’s take    as an 

example. We can express    as the product of two factors having the same parity in more than one way, 

e.g.      and     . Since we now need to write       in the form           , we have 

       and      . Solving simultaneously gives      and     which means we can express 

   in the form              and hence in the form       . Using a similar approach we can 

write      in the form            and hence in the form      .    

Interestingly, this observation should alert one to the fact that it is possible to express all prime numbers 

(with the exception of  ) as the difference of two squares. Since all prime numbers with the exception of   

are odd, it follows that their only factors, i.e.   and the prime number itself, must necessarily both be odd 

and the prime number must therefore be expressible as the difference of two squares. One can use a 

similar line of reasoning to explain why it’s possible to express all perfect squares and all perfect cubes as 

the difference of two squares. It is left to the reader to investigate this further.       

 

 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 

1   0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 

2     0 5 12 21 32 45 60 77 96 117 140 165 192 221 

3       0 7 16 27 40 55 72 91 112 135 160 187 216 

4         0 9 20 33 48 65 84 105 128 153 180 209 

5           0 11 24 39 56 75 96 119 144 171 200 

6             0 13 28 45 64 85 108 133 160 189 

7               0 15 32 51 72 95 120 147 176 

8                 0 17 36 57 80 105 132 161 

9                   0 19 40 63 88 115 144 

10                     0 21 44 69 96 125 

11                       0 23 48 75 104 

12                         0 25 52 81 

13                           0 27 56 

14                             0 29 

15                               0 
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A GRAPHICAL REPRESENTATION OF THE DIFFERENCE OF TWO SQUARES 

We all know that         represents the graph of a circle centred on the origin with a radius of   

units. But what about the graph represented by        ? One could of course simply make use of 

appropriate graphing software such as GeoGebra to plot the graph directly, but before we do that let’s 

think about what the graph might look like. Let’s begin by trying to find possible sets of co-ordinates 

      that satisfy        . Perhaps the two most obvious points would be       and       . 

Inspired by the 3-4-5 Pythagorean triple we might also quickly hit on the point       and its associated 

points        ,        and        . If we extend our search beyond integer co-ordinates there are an 

infinite number of other possibilities, for example (√    ), (√   √ ), (√   √ ), (√    ) etc. And 

of course there are four variations for each point:      ,      ,       and      . This observation 

itself tells us something useful about the symmetry of the graph of        , namely that it has 

reflectional symmetry across the  -axis as well as the  -axis. Let’s now turn our mind to the domain and 

range of the graph of        . Clearly both    and    must be positive. The minimum value of    is 

thus   (where   itself can take on any value), from which it follows that    must be greater than or equal 

to  . Solving the inequality        gives     or    . We now know that the graph of       

  has range     and domain         ]       . After plotting a few points we should now have 

a reasonably good idea of what the graph would look like. We can confirm our conjecture by plotting the 

graph using graphing software (Figure 4).            

  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4:  The graph of        . 

 

The graph of         takes the form of a hyperbola with asymptotes     and     . From here 

it should be a simple matter to visualise the graph of        , i.e. the inverse graph.  

USING AREA TO VISUALISE THE DIFFERENCE OF TWO SQUARES 

Let us now explore the idea of the difference of two squares in a more literal way – i.e. by seeing each 

square as a geometrical shape. If we take a square piece of paper and cut off a square from its corner, then 

what remains of the original square piece is quite literally ‘the difference of two squares’. If the original 



Page 26 

 

Learning and Teaching Mathematics, No. 15, 2013, pp. 22-27 

 

square piece of paper has side length   and the smaller square which is cut off has side length  , then the 

two squares have areas    and    respectively and the remaining piece will have area      . Once the 

smaller square has been cut off from the corner of the larger square, the challenge is to determine the area 

of the remaining piece. One way of doing this is illustrated in Figure 5.  

 

FIGURE 5:  Dissecting the remaining piece into two rectangles. 

Figure 5 shows how the remaining piece can be dissected into two rectangles which, after rearrangement, 

form a single rectangle with dimensions       by       and which thus has area           . 

Once the smaller square has been cut off from the corner of the larger square, the remaining piece clearly 

has area      . The rearrangement shown in Figure 5 thus gives visual insight into the algebraic 

equivalence of the two expressions       and           . An alternative dissection, which 

involves one of the pieces being flipped over, is shown in Figure 6. 

 

 

 

 

 

 

FIGURE 6:  An alternative dissection. 
 

Rather than cutting the smaller square from the corner of the larger square, what if we remove the smaller 

square from the centre of the larger square? Would we still be able to carry out a dissection of the 

remaining piece of paper to show that its area is           ? Figure 7 shows how this could be 

accomplished by sub-dividing the remaining piece of paper into four identical trapeziums which are then 

rearranged to form a parallelogram with base       and perpendicular height      . Instead of 

trapeziums the remaining piece of paper could also be sub-divided into four identical rectangles which 

could then be rearranged into a larger rectangle with dimensions       by      . It is left to the 

reader to explore this further.    

 

 

 

 

 

FIGURE 7:  Dissecting the remaining piece into four identical trapeziums. 
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RATIONALISING DENOMINATORS USING THE DIFFERENCE OF TWO SQUARES 

We know that      factorises to           . Similarly,      factorises to           . We 

can extend the idea for numbers that are not perfect squares. So, for example,      can be written in 

the form (  √ )(  √ ).  This broader idea of the difference of two squares is fundamental to the 

process of rationalising the denominators of fractions that have irrational denominators.  

You will no doubt have noticed that natural display calculators never give answers with surds in the 

denominator of a fraction, i.e. fractions with irrational denominators. Let’s take the example of 
 

  √ 
 . 

When this is entered into a natural display calculator it will automatically be converted into the form 
  √ 

  
. 

The process of rationalising the denominator is illustrated below: 

       
 

  √ 
 =   

 

  √ 
 

  √ 

  √ 
 

      =   
 (  √ )

(  √ )(  √ )
 

      =   
 (  √ )

    
 

      =   
  √ 

  
 

Using the above process the original fraction, with irrational denominator (  √ ), has been converted 

to an equivalent fraction with a rational denominator of   .  

MENTAL ARITHMETIC USING THE DIFFERENCE OF TWO SQUARES 

The difference of two squares can also be used as a rather nifty shortcut for mentally calculating products 

such as      . Provided the two numbers being multiplied are equally spaced either side of a number 

whose square can be easily calculated, we can determine the product very easily as the difference of two 

squares. In our example, note that    and    are equally spaced either side of   . We can now think of 

the product       as              which of course can be written as a difference of two squares, 

namely       . And since the square of    can easily be calculated mentally we can readily arrive at the 

answer of the original product:                  . 

CONCLUDING COMMENTS 

It was the purpose of this paper to show how a simple idea such as the ‘difference of two squares’ can lead 

to a wealth of mathematical exploration. What I hope I have demonstrated is how by engaging with the 

core idea of the ‘difference of two squares’, rather than simply focussing on factorising traditional binomial 

expressions, one is able to explore multiple representations of the ‘difference of two squares’ and thereby 

forge meaningful connections between different mathematical domains and develop conceptual insight 

into the core idea itself.       

ACKNOWLEDGEMENT 

The work of the FRF Mathematics Education Chair, Rhodes University is supported by the FirstRand 

Foundation Mathematics Education Chairs Initiative of the FirstRand Foundation, Rand Merchant Bank 

and the Department of Science and Technology. 

 

 




